
Computer Science
An Overview
THIRTEENTH EDITION

 J. Glenn Brookshear
Dennis Brylow

GLOBAL
EDITION

GLOBAL
EDITION

C
om

puter Science
An O

verview
Brookshear
Brylow

T

H
IRT

EEN
T

H

ED
IT

IO
N

G
LO

B
A

L
ED

IT
IO

N

This is a special edition of an established title widely used by colleges and
universities throughout the world. Pearson published this exclusive edition
for the benefit of students outside the United States and Canada. If you
purchased this book within the United States or Canada, you should be aware
that it has been imported without the approval of the Publisher or Author.

Computer Science: An Overview, now in its thirteenth edition, explores the breadth
of computer science while still including enough depth to convey an honest
appreciation of the topics covered.

Features
• 	New! — full color printing makes figures and diagrams more descriptive and

allows syntax coloring to clarify code segments better

• 	Continues the use of Python code and Python-like pseudocode to reinforce
concepts, introducing students to a mature language with a clean and easily learned
syntax, simple I/O primitives, and support for multiple programming paradigms

• 	Over 1,000 problems to enhance student participation, including Questions and
Exercises to review the material, Chapter Review Problems for homework, and
Social Issues to launch research assignments and provoke thought and discussion

• 	Additional Reading references at the end of each chapter

Brookshear_13_1292263423_Final.indd 1 04/10/18 7:28 PM

13th Edition

Global Edition

J. Glenn Brookshear
(Author Emeritus)

and

Dennis Brylow
Marquette University

330 Hudson Street, NY NY 10013

Computer
Science

AN OVERVIEW

A01_BROO3427_13_GE_FM.indd 1 22/10/18 4:16 PM

Senior Vice President, Courseware Portfolio
Management: Engineering, Computer Science,
Mathematics, Statistics, and Global Editions: Marcia
Horton

Director, Portfolio Management: Engineering, Computer
Science, and Global Editions: Julian Partridge

Executive Portfolio Manager: Tracy Johnson
Portfolio Management Assistant: Meghan Jacoby
Managing Producer, ECS and Mathematics: Scott Disanno
Senior Content Producer: Erin Ault
Acquisitions Editor, Global Edition: K.K. Neelakantan
Assistant Project Editor, Global Edition: Aurko Mitra
Media Production Manager, Global Edition: Vikram

Kumar

Senior Manufacturing Controller, Global Edition: Angela
Hawksbee

Manager, Rights and Permissions Manager: Ben Ferrini
Operations Specialist: Maura Zaldivar-Garcia
Inventory Manager: Bruce Bounty
Product Marketing Manager: Yvonne Vannatta
Field Marketing Manager: Demetrius Hall
Marketing Assistant: Jon Bryant
Full Service Project Management: Sasibalan Chidambaram,

SPi Global
Cover Design: Lumina Datamatics, Inc.
Cover Photo: Amirul Syaidi/Shutterstock

Pearson Education Limited
KAO Two
KAO Park
Harlow
CM17 9NA
United Kingdom

and Associated Companies throughout the world

Visit us on theWorld Wide Web at: www.pearsonglobaleditions.com

© Pearson Education Limited 2020

The rights of J. Glenn Brookshear and Dennis Brylow to be identified as the authors of this work have been asserted by
them in accordance with the Copyright, Designs and Patents Act 1988.

Authorized adaptation from the United States edition, entitled Computer Science: An Overview, 13th Edition,
ISBN 978-0-13-487546-0, by J. Glenn Brookshear and Dennis Brylow, published by Pearson Education © 2019.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, electronic, mechanical, photocopying, recording or otherwise, without either the prior written permission
of the publisher or a license permitting restricted copying in the United Kingdom issued by the Copyright Licensing
Agency Ltd, Saffron House, 6–10 Kirby Street, London EC1N 8TS.

All trademarks used herein are the property of their respective owners. The use of any trademark in this text does not vest
in the author or publisher any trademark ownership rights in such trademarks, nor does the use of such trademarks imply
any affiliation with or endorsement of this book by such owners. For information regarding permissions, request forms,
and the appropriate contacts within the Pearson Education Global Rights and Permissions department, please visit
www.pearsoned.com/permissions.

This eBook is a standalone product and may or may not include all assets that were part of the print version. It also does
not provide access to other Pearson digital products like MyLab and Mastering. The publisher reserves the right to remove
any material in this eBook at any time.

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library

ISBN 10: 1-292-26342-3
ISBN 13: 978-1-292-26342-7
eBook ISBN: 978-1-292-26344-1

eBook formatted by SPi Global

A01_BROO3427_13_GE_FM_updf.indd 2 11/01/19 5:16 PM

For Dexter,
who I know will eagerly read

this book cover to cover
before he turns eight.

Oh, the places you will go . . .

A01_BROO3427_13_GE_FM.indd 3 22/10/18 4:16 PM

	 4

Contents

	Chapter 0	 Introduction  17
	 0.1	 The Role of Algorithms  18
	 0.2	 The History of Computing  20
	 0.3	 An Outline of Our Study  25
	 0.4	 The Overarching Themes of Computer Science  27

	Chapter 1	 Data Storage  39
	 1.1	 Bits and Their Storage  40
	 1.2	 Main Memory  48
	 1.3	 Mass Storage  51
	 1.4	 Representing Information as Bit Patterns  57
	 *1.5	 The Binary System  65
	 *1.6	 Storing Integers  70
	 *1.7	 Storing Fractions  77
	 *1.8	 Data and Programming  83
	 *1.9	 Data Compression  91
	 *1.10	 Communication Errors  97

	Chapter 2	 Data Manipulation  111
	 2.1	 Computer Architecture  112
	 2.2	 Machine Language  115
	 2.3	 Program Execution  122
	 *2.4	 Arithmetic/Logic Instructions  130
	 *2.5	 Communicating with Other Devices  135
	 *2.6	 Programming Data Manipulation  140
	 *2.7	 Other Architectures  151

	Chapter 3	 Operating Systems  163
	 3.1	 The History of Operating Systems  164
	 3.2	 Operating System Architecture  169
	 3.3	 Coordinating the Machine’s Activities  177
	 *3.4	 Handling Competition Among Processes  180
	 3.5	 Security  186

	Chapter 4	 Networking and the Internet  197
	 4.1	 Network Fundamentals  198
	 4.2	 The Internet  208
	 4.3	 The World Wide Web  220

* Asterisks indicate suggestions for optional sections.

A01_BROO3427_13_GE_FM.indd 4 22/10/18 4:16 PM

	 5Contents

	 *4.4	 Internet Protocols  229
	 *4.5	 Simple Client Server  237
	 4.6	 Cybersecurity  241

	Chapter 5	 Algorithms  259
	 5.1	 The Concept of an Algorithm  260
	 5.2	 Algorithm Representation  263
	 5.3	 Algorithm Discovery  272
	 5.4	 Iterative Structures  279
	 5.5	 Recursive Structures  290
	 5.6	 Efficiency and Correctness  299

	Chapter 6	 Programming Languages  319
	 6.1	 Historical Perspective  320
	 6.2	 Traditional Programming Concepts  331
	 6.3	 Procedural Units  346
	 6.4	 Language Implementation  354
	 6.5	 Object-Oriented Programming  364
	 *6.6	 Programming Concurrent Activities  371
	 *6.7	 Declarative Programming  374

	Chapter 7	 Software Engineering  389
	 7.1	 The Software Engineering Discipline  390
	 7.2	 The Software Life Cycle  393
	 7.3	 Software Engineering Methodologies  398
	 7.4	 Modularity  401
	 7.5	 Tools of the Trade  410
	 7.6	 Quality Assurance  419
	 7.7	 Documentation  422
	 7.8	 The Human-Machine Interface  424
	 7.9	 Software Ownership and Liability  428

	Chapter 8	 Data Abstractions  437
	 8.1	 Basic Data Structures  438
	 8.2	 Related Concepts  443
	 8.3	 Implementing Data Structures  446
	 8.4	 A Short Case Study  461
	 8.5	 Customized Data Types  466
	 8.6	 Classes and Objects  470
	 *8.7	 Pointers in Machine Language  472

	Chapter 9	 Database Systems  485
	 9.1	 Database Fundamentals  486
	 9.2	 The Relational Model  492

A01_BROO3427_13_GE_FM.indd 5 22/10/18 4:16 PM

	 6 Contents

	 *9.3	 Object-Oriented Databases  503
	 *9.4	 Maintaining Database Integrity  506
	 *9.5	 Traditional File Structures  510
	 9.6	 Data Mining  519
	 9.7	 Social Impact of Database Technology  522

	Chapter 10	 Computer Graphics  533
	 10.1	 The Scope of Computer Graphics  534
	 10.2	 Overview of 3D Graphics  537
	 10.3	 Modeling  539
	 10.4	 Rendering  549
	 *10.5	 Dealing with Global Lighting  561
	 10.6	 Animation  564

	Chapter 11	 Artificial Intelligence  575
	 11.1	 Intelligence and Machines  576
	 11.2	 Perception  581
	 11.3	 Reasoning  588
	 11.4	 Additional Areas of Research  600
	 11.5	 Artificial Neural Networks  607
	 11.6	 Robotics  612
	 11.7	 Considering the Consequences  615

	Chapter 12	 Theory of Computation  629
	 12.1	 Functions and Their Computation  630
	 12.2	 Turing Machines  633
	 12.3	 Universal Programming Languages  637
	 12.4	 A Noncomputable Function  643
	 12.5	 Complexity of Problems  648
	 *12.6	 Public-Key Cryptography  660

Appendixes  670
	 A	 ASCII  670
	 B	� Circuits to Manipulate Two’s Complement
	 Representations  671
	 C	 Vole: A Simple Machine Language  674
	 D	 High-Level Programming Languages  677
	 E	 The Equivalence of Iterative and Recursive Structures  679
	 F	 Answers to Questions & Exercises  681

Index  726

A01_BROO3427_13_GE_FM.indd 6 22/10/18 4:16 PM

	 7

Preface

This book presents an introductory survey of computer science. It explores
the breadth of the subject while including enough depth to convey an honest
appreciation of the topics involved.

Audience
We wrote this text for students of computer science as well as students from
other disciplines. As for computer science students, most begin their studies
with the illusion that computer science is programming, web browsing, and
Internet file sharing because that is essentially all they have seen. Yet computer
science is much more than this. Beginning computer science students need
exposure to the breadth of the subject in which they are planning to major.
Providing this exposure is the theme of this book. It gives students an overview
of computer science—a foundation from which they can appreciate the rele-
vance and interrelationships of future courses in the field. This survey approach
is, in fact, the model used for introductory courses in the natural sciences.

This broad background is also what students from other disciplines need if
they are to relate to the technical society in which they live. A computer science
course for this audience should provide a practical, realistic understanding of
the entire field rather than merely an introduction to using the Internet or
training in the use of some popular software packages. There is, of course, a
proper place for that training, but this text is about educating.

While writing previous editions of this text, maintaining accessibility for
nontechnical students was a major goal. The result was that the book has been
used successfully in courses for students over a wide range of disciplines and
educational levels, ranging from high school to graduate courses. This 13th
edition is designed to continue that tradition.

New in the 13th Edition
Now in color! The move to a full color printing process in the 13th edition has
allowed us to make many figures and diagrams more descriptive, and to use
syntax coloring to better effect for clarifying code and pseudocode segments in
the text. Most modern programming interfaces use color to aid the program-
mer’s understanding of code; your computer science textbook should do no less.

A major theme during the development of this 13th edition has been
highlighting the intersections with the new College Board Advanced
Placement® Computer Science Principles (“CSP”) exam. This “breadth-first”
textbook for introducing computer science has included many of the big ideas
and computational practices codified in the CSP framework since long before
that exam came into existence; prior editions of the book have been used in

A01_BROO3427_13_GE_FM.indd 7 22/10/18 4:16 PM

	 8 Preface

pilot versions of CSP courses, and as a professional development resource for
educators preparing to teach the high school version of the course. While the
primary audience for this book remains college-level introductory courses, this
edition explicitly calls out many points of intersection with CSP content to better
assist students and instructors either preparing for the AP® CSP exam, or taking a
college-level course that is intended to correspond with the credit from that exam.

The 13th edition continues the use of Python code examples and Python-
like pseudocode adopted in the 12th edition. We made this change for sev-
eral reasons. First, the text already contains quite a bit of code in various
languages, including detailed pseudocode in several chapters. To the extent
that readers are already absorbing a fair amount of syntax, it is appropriate
to target that syntax toward a language they may actually see in a subsequent
course. More importantly, a growing number of instructors who use this text
have made the determination that even in a breadth-first introduction to com-
puting, it is difficult for students to master many of the topics in the absence
of programming tools for exploration and experimentation.

But why Python? Choosing a language is always a contentious matter,
with any choice bound to upset at least as many as it pleases. Python is an
excellent middle ground, with:

•	 a clean, easily learned syntax,
•	 simple I/O primitives,
•	 data types and control structures that correspond closely to the

pseudocode primitives used in earlier editions, and
•	 support for multiple programming paradigms.

It is a mature language with a vibrant development community and copi-
ous online resources for further study. Python remains one of the top five
most commonly used languages in the industry by some measures, and has
seen a sharp increase in its usage for introductory computer science courses.
It is particularly popular for introductory courses for non-majors, and has
wide acceptance in other STEM fields, such as physics and biology, and as the
language of choice for computational science applications.

Nevertheless, the focus of the text remains on broad computer science
concepts; the Python supplements are intended to give readers a deeper taste
of programming than previous editions, but not to serve as a full-fledged intro-
duction to programming. The Python topics covered are driven by the existing
structure of the text. Thus, Chapter 1 touches on Python syntax for representing
data—integers, floats, ASCII, and Unicode strings. Chapter 2 touches on Python
operations that closely mirror the machine primitives discussed throughout
the rest of the chapter. Conditionals, loops, and functions are introduced in
Chapter 5, at the time that those constructs are needed to devise a sufficiently
complete pseudocode for describing algorithms. In short, Python constructs
are used to reinforce computer science concepts rather than to hijack the
conversation.

Every chapter has seen revisions, updates, and corrections from the previ-
ous editions.

A01_BROO3427_13_GE_FM.indd 8 22/10/18 4:16 PM

	 9Organization

Organization
This text follows a bottom-up arrangement of subjects that progresses from
the concrete to the abstract—an order that results in a sound pedagogical
presentation in which each topic leads to the next. It begins with the funda-
mentals of information encoding, data storage, and computer architecture
(Chapters 1 and 2); progresses to the study of operating systems (Chapter 3) and
computer networks (Chapter 4); investigates the topics of algorithms, program-
ming languages, and software development (Chapters 5 through 7); explores
techniques for enhancing the accessibility of information (Chapters 8 and 9);
considers some major applications of computer technology via graphics
(Chapter 10) and artificial intelligence (Chapter 11); and closes with an
introduction to the abstract theory of computation (Chapter 12).

Although the text follows this natural progression, the individual chapters
and sections are surprisingly independent and can usually be read as isolated
units or rearranged to form alternative sequences of study. Indeed, the book is
often used as a text for courses that cover the material in a variety of orders. One
of these alternatives begins with material from Chapters 5 and 6 (Algorithms
and Programming Languages) and returns to the earlier chapters as desired.
I also know of one course that starts with the material on computability from
Chapter 12. In still other cases, the text has been used in “senior capstone”
courses where it serves as merely a backbone from which to branch into projects
in different areas. Courses for less technically oriented audiences may want to
concentrate on Chapters 4 (Networking and the Internet), 9 (Database Systems),
10 (Computer Graphics), and 11 (Artificial Intelligence).

On the opening page of each chapter, we have used asterisks to mark
some sections as optional. These are sections that cover topics of more spe-
cific interest, or perhaps explore traditional topics in more depth. Our inten-
tion is merely to provide suggestions for alternative paths through the text.
There are, of course, other shortcuts. In particular, if you are looking for a
quick read, we suggest the following sequence:

Section Topic
1.1–1.4 Basics of data encoding and storage
2.1–2.3 Machine architecture and machine language
3.1–3.3 Operating systems
4.1– 4.3 Networking and the Internet
5.1–5.4 Algorithms and algorithm design
6.1– 6.4 Programming languages
7.1–7.2 Software engineering
8.1– 8.3 Data abstractions
9.1–9.2 Database systems
10.1–10.2 Computer graphics
11.1–11.3 Artificial intelligence
12.1–12.2 Theory of computation

There are several themes woven throughout the text. One is that com
puter science is dynamic. The text repeatedly presents topics in a historical

A01_BROO3427_13_GE_FM.indd 9 22/10/18 4:16 PM

	 10 Preface

perspective, discusses the current state of affairs, and indicates directions
of research. Another theme is the role of abstraction and the way in which
abstract tools are used to control complexity. This theme is introduced in
Chapter 0 and then echoed in the context of operating system architecture,
networking, algorithm development, programming language design, software
engineering, data organization, and computer graphics.

To Instructors
There is more material in this text than students can normally cover in a
single semester, so do not hesitate to skip topics that do not fit your course
objectives or to rearrange the order as you see fit. You will find that, although
the text follows a plot, the topics are covered in a largely independent manner
that allows you to pick and choose as you desire. The book is designed to be
used as a course resource—not as a course definition. We suggest encouraging
students to read the material not explicitly included in your course. We
underrate students if we assume that we have to explain everything in class.
We should be helping them learn to learn on their own.

We feel obliged to say a few words about the bottom-up, concrete-
to-abstract organization of the text. As academics, we too often assume that
students will appreciate our perspective of a subject—often one that we
have developed over many years of working in a field. As teachers, we think
we do better by presenting material from the student’s perspective. This is
why the text starts with data representation/storage, machine architecture,
operating systems, and networking. These are topics to which students read-
ily relate—they have most likely heard terms such as JPEG and MP3; they
have probably recorded data on DVDs and flash drives; they have inter-
acted with an operating system; and they use the Internet and smartphones
daily. By starting the course with these topics, students discover answers to
many of the “why” questions they have been carrying for years, and learn to
view the course as practical rather than theoretical. From this beginning, it
is natural to move on to the more abstract issues of algorithms, algorithmic
structures, programming languages, software development methodologies,
computability, and complexity, that those of us in the field view as the main
topics in the science. As already stated, the topics are presented in a manner
that does not force you to follow this bottom-up sequence, but we encourage
you to give it a try.

We are all aware that students learn a lot more than we teach them
directly, and the lessons they learn implicitly are often better absorbed
than those that are studied explicitly. This is significant when it comes to
“teaching” problem solving. Students do not become problem solvers by
studying problem-solving methodologies. They become problem solvers
by solving problems—and not just carefully posed “textbook problems.”
So this text contains numerous problems, a few of which are intentionally
vague—meaning that there is not necessarily a single correct approach
or a single correct answer. We encourage you to use these and to expand
on them.

A01_BROO3427_13_GE_FM.indd 10 22/10/18 4:16 PM

	 11Supplemental Resources

Other topics in the “implicit learning” category are those of profession-
alism, ethics, and social responsibility. We do not believe that this material
should be presented as an isolated subject that is merely tacked on to the
course. Instead, it should be an integral part of the coverage that surfaces
when it is relevant. This is the approach followed in this text. You will find
that Sections 3.5, 4.6, 7.9, 9.7, and 11.7 present such topics as security, privacy,
liability, and social awareness in the context of operating systems, networking,
software engineering, database systems, and artificial intelligence. You will
also find that each chapter includes a collection of questions called Social
Issues that challenge students to think about the relationship between the
material in the text and the society in which they live.

Thank you for considering our text for your course. Whether you do or
do not decide that it is right for your situation, I hope that you find it to be a
contribution to the computer science education literature.

Pedagogical Features
This text is the product of many years of teaching. As a result, it is rich in peda-
gogical aids. Paramount is the abundance of problems to enhance the student’s
participation—over 1,000 in this 13th edition. These are classified as Questions
and Exercises, Chapter Review Problems, and Social Issues. The Questions and
Exercises appear at the end of each section (except for the introductory chapter).
They review the material just discussed, extend the previous discussion, or hint at
related topics to be covered later. These questions are answered in Appendix F.

The Chapter Review Problems appear at the end of each chapter (except
for the introductory chapter). They are designed to serve as “homework”
problems in that they cover the material from the entire chapter and are not
answered in the text.

Also, at the end of each chapter are the questions in the Social Issues cat-
egory. They are designed for thought and discussion. Many of them can be used
to launch research assignments culminating in short written or oral reports.

Each chapter also ends with a list called Additional Reading that contains
references to other material relating to the subject of the chapter. The websites
identified in this preface, in the text, and in the sidebars of the text are also
good places to look for related material.

Supplemental Resources
A variety of supplemental materials for this text are available at the book’s
companion website: www.pearsonglobaleditions.com. The following are
accessible to all readers:

•	 Chapter-by-chapter activities that extend topics in the text and
provide opportunities to explore related topics.

•	 Chapter-by-chapter “self-tests” that help readers to rethink the
material covered in the text.

•	 Activities that teach the basics of Python in a pedagogical sequence
compatible with the text.

A01_BROO3427_13_GE_FM.indd 11 22/10/18 4:16 PM

http://www.pearsonglobaleditions.com/

	 12 Preface

In addition, the following supplements are available to quali-
fied instructors at Pearson’s Instructor Resource Center. Please visit
www.pearsonglobaleditions.com or contact your Pearson sales representa-
tive for information on how to access them.

•	 Instructor’s Guide with answers to the Chapter Review Problems
•	 PowerPoint lecture slides
•	 Test bank

To Students
Glenn Brookshear is a bit of a nonconformist (some of his friends would say
more than a bit), so when he set out to write this text he didn’t always follow
the advice he received. In particular, many argued that certain material was
too advanced for beginning students. But, we believe that if a topic is rel-
evant, then it is relevant even if the academic community considers it to be
an “advanced topic.” You deserve a text that presents a complete picture of
computer science—not a watered-down version containing artificially simpli-
fied presentations of only those topics that have been deemed appropriate for
introductory students. Thus, we have not avoided topics. Instead, we’ve sought
better explanations. We’ve tried to provide enough depth to give you an hon-
est picture of what computer science is all about. As in the case of spices in a
recipe, you may choose to skip some of the topics in the following pages, but
they are there for you to taste if you wish—and we encourage you to do so.

We should also point out that in any course dealing with technology, the
details you learn today may not be the details you will need to know tomorrow.
The field is dynamic—that’s part of the excitement. This book will give you a
current picture of the subject as well as a historical perspective. With this back-
ground, you will be prepared to grow along with technology. We encourage you
to start the growing process now by exploring beyond this text. Learn to learn.

Thank you for the trust you have placed in us by choosing to read our
book. As authors we have an obligation to produce a manuscript that is worth
your time. We hope you find that we have lived up to this obligation.

Acknowledgments
First and foremost, I thank Glenn Brookshear, who has shepherded this book,
“his baby,” through 11 previous editions, spanning more than a quarter cen-
tury of rapid growth and tumultuous change in the field of computer sci-
ence. While this is the second edition in which he has allowed a co-author to
oversee all of the revisions, the pages of this 13th edition remain largely in
Glenn’s voice and, I hope, guided by his vision. Any new blemishes are mine;
the elegant underlying framework are all his.

I join Glenn in thanking those of you who have supported this book by
reading and using it in previous editions. We are honored. Thirteen editions
for a computer science textbook? We must be nearing some kind of record.

A01_BROO3427_13_GE_FM.indd 12 22/10/18 4:16 PM

http://www.pearsonglobaleditions.com/

	 13Acknowledgments

Andrew Kuemmel (Madison West) has been an invaluable sounding
board as we worked to identify the overlaps between the 13th edition and
the CS Principles framework. He is the only person I know who has success-
fully taught many instances of the CSP course at both the high school and
university levels, and his tireless advocacy for computer science educators in
my home state of Wisconsin has been truly inspirational.

David T. Smith (Indiana University of Pennsylvania) played a significant role
in co-authoring revisions to the 11th edition with me, many of which are still visible
in this 13th edition. David’s close reading of previous editions and careful attention
to the supplemental materials have been essential. Andrew Kuemmel (Madison
West), George Corliss (Marquette), and Chris Mayfield (James Madison) all
provided valuable feedback, insight, and/or encouragement on drafts for this or
previous editions, while James E. Ames (Virginia Commonwealth), Stephanie E.
August (Loyola), Yoonsuck Choe (Texas A&M), Melanie Feinberg (UT-Austin),
Eric D. Hanley (Drake), Sudharsan R. Iyengar (Winona State), Ravi Mukkamala
(Old Dominion), and Edward Pryor (Wake Forest) all offered valuable reviews
of the Python-specific revisions for the 12th edition.

Others who have contributed in this or previous editions include J. M.
Adams, C. M. Allen, D. C. S. Allison, E. Angel, R. Ashmore, B. Auernheimer,
P. Bankston, M. Barnard, P. Bender, K. Bowyer, P. W. Brashear, C. M. Brown,
H. M. Brown, B. Calloni, J. Carpinelli, M. Clancy, R. T. Close, D. H. Cooley, L. D.
Cornell, M. J. Crowley, F. Deek, M. Dickerson, M. J. Duncan, S. Ezekiel,
C. Fox, S. Fox, N. E. Gibbs, J. D. Harris, D. Hascom, L. Heath, P. B. Henderson,
L. Hunt, M. Hutchenreuther, L. A. Jehn, K. K. Kolberg, K. Korb, G. Krenz,
J. Kurose, J. Liu, T. J. Long, C. May, J. J. McConnell, W. McCown, S. J. Merrill,
K. Messersmith, J. C. Moyer, M. Murphy, J. P. Myers, Jr., D. S. Noonan,
G. Nutt, W. W. Oblitey, S. Olariu, G. Riccardi, G. Rice, N. Rickert, C. Riedesel,
J. B. Rogers, G. Saito, W. Savitch, R. Schlafly, J. C. Schlimmer, S. Sells, Z. Shen,
G. Sheppard, J. C. Simms, M. C. Slattery, J. Slimick, J. A. Slomka, J. Solderitsch,
R. Steigerwald, L. Steinberg, C. A. Struble, C. L. Struble, W. J. Taffe, J. Talburt,
P. Tonellato, P. Tromovitch, P. H. Winston, E. D. Winter, E. Wright, M. Ziegler,
and one anonymous. To these individuals we give our sincere thanks.

Diane Christie designed Java and C++ manuals for the companion website
in a previous edition, from which our new Python resources are descended.
Thank you, Diane. Another thank you goes to Roger Eastman, who was the
creative force behind the chapter-by-chapter activities that accompanied
prior editions of the text, the DNA of which can still be found in the current
edition’s companion website activities.

My thanks to the good people at Pearson who have supported this project.
Tracy Johnson, Erin Ault, Carole Snyder, and Scott Disanno in particular have
brought their wisdom and many improvements to the book throughout the process.

Finally, my thanks to my wife, Petra, who distracted our three children for
many long afternoons and evenings while I worked on this edition. She is my rock.

D.W.B.
Marquette University

January 01, 2018

A01_BROO3427_13_GE_FM.indd 13 22/10/18 4:16 PM

	 14 Preface ﻿ ﻿

Acknowledgments for the Global Edition
Pearson would like to thank and acknowledge the following people for
their contributions to this Global Edition.

Contributor

Manasa S. (NMAM Institute of Technology)

Reviewers

Ajay Mittal (University Institute of Engineering and Technology)

Lindsay Ward (James Cook University)

A01_BROO3427_13_GE_FM.indd 14 22/10/18 4:16 PM

This page intentionally left blank

A01_PERL5624_08_GE_FM.indd 24 2/12/18 2:58 PM

Chapter

	 0.1	 THE ROLE OF ALGORITHMS

	 0.2	 THE HISTORY OF COMPUTING

	 0.3	 AN OUTLINE OF OUR STUDY

	 0.4	 THE OVERARCHING THEMES
OF COMPUTER SCIENCE
Algorithms
Abstraction
Creativity
Data
Programming
Internet
Impact

In this preliminary chapter, we consider the scope of computer science,
develop a historical perspective, and establish a foundation from which

to launch our study. ■

0

M00_BROO3427_13_GE_C00.indd 16 17/10/18 4:37 PM

Introduction

The study of algorithms is at the core of
computer science.

LO. Explain the importance of algorithms
in the field of computer science.

The recent history of computer science
is characterized by rapid advancements
in computing power, miniaturization, and
connectivity.

LO. Identify major milestones in com-
puter science history that have paved the
way to our modern day technological
society.

Advancements in computer science are
profoundly impacting human culture and
society.

LO. Discuss some of the social, ethical,
or legal dilemmas that have resulted from
advancements in computer science.

ENDURING UNDERSTANDINGS AND LEARNING OUTCOMES

M00_BROO3427_13_GE_C00.indd 17 17/10/18 4:37 PM

	 18 Chapter 0  Introduction

Computer science is the discipline that seeks to build a scientific foundation
for such topics as computer design, computer programming, information pro-
cessing, algorithmic solutions of problems, and the algorithmic process itself.
It provides the underpinnings for today’s computer applications as well as the
foundations for tomorrow’s computing infrastructure.

This book provides a comprehensive introduction to this science. We will
investigate a wide range of topics including most of those that constitute a
typical university computer science curriculum. We want to appreciate the full
scope and dynamics of the field. Thus, in addition to the topics themselves,
we will be interested in their historical development, the current state of
research, and prospects for the future. Our goal is to establish a functional
understanding of computer science—one that will support those who wish to
pursue more specialized studies in the science as well as one that will enable
those in other fields to flourish in an increasingly technical society.

0.1 The Role of Algorithms

We begin with the most fundamental concept of computer science—that of an
algorithm. Informally, an algorithm is a set of steps that defines how a task is
performed. (We will be more precise later, in Chapter 5.) For example, there
are algorithms for cooking (called recipes), for finding your way through
a strange city (more commonly called directions), for operating washing
machines (usually displayed on the inside of the washer’s lid or perhaps on
the wall of a laundromat), for playing music (expressed in the form of sheet
music), and for performing magic tricks (Figure 0.1).

Before a machine such as a computer can perform a task, an algorithm
for performing that task must be discovered and represented in a form that
is compatible with the machine. A representation of an algorithm is called
a program. For the convenience of humans, computer programs are usually
printed on paper or displayed on computer screens. For the convenience of
machines, programs are encoded in a manner compatible with the technology
of the machine. The process of developing a program, encoding it in machine-
compatible form, and inserting it into a machine is called programming, or
sometimes coding. Programs, and the algorithms they represent, are collec-
tively referred to as software, in contrast to the machinery itself, which is
known as hardware.

The study of algorithms began as a subject in mathematics. Indeed, the
search for algorithms was a significant activity of mathematicians long before
the development of today’s computers. The goal was to find a single set of
directions that described how all problems of a particular type could be
solved. One of the best known examples of this early research is the long
division algorithm for finding the quotient of two multiple-digit numbers.
Another example is the Euclidean algorithm, discovered by the Ancient

M00_BROO3427_13_GE_C00.indd 18 17/10/18 4:37 PM

	 190.1  The Role of Algorithms

Figure 0.1  An algorithm for a magic trick

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

Step 6.

E�ect: The performer places some cards from a normal deck of playing cards face
down on a table and mixes them thoroughly while spreading them out on the table.
Then, as the audience requests either red or black cards, the performer turns over cards
of the requested color.

Secret and Patter:

From a normal deck of cards, select ten red cards and ten black cards. Deal these cards
face up in two piles on the table according to color.

Announce that you have selected some red cards and some black cards.

Pick up the red cards. Under the pretense of aligning them into a small deck, hold them
face down in your left hand and, with the thumb and first finger of your right hand, pull
back on each end of the deck so that each card is given a slightly backward curve. Then
place the deck of red cards face down on the table as you say, “Here are the red cards
in this stack.”

Pick up the black cards. In a manner similar to that in step 3, give these cards a slight
forward curve. Then return these cards to the table in a face-down deck as you say,
“And here are the black cards in this stack.”

Immediately after returning the black cards to the table, use both hands to mix the red
and black cards (still face down) as you spread them out on the tabletop. Explain that
you are thoroughly mixing the cards.

6.1. Ask the audience to request either a red or a black card.

6.2. If the color requested is red and there is a face-down card with a concave
 appearance, turn over such a card while saying, “Here is a red card.”

6.3. If the color requested is black and there is a face-down card with a convex
 appearance, turn over such a card while saying, “Here is a black card.”

6.4. Otherwise, state that there are no more cards of the requested color and turn over
 the remaining cards to prove your claim.

As long as there are face-down cards on the table, repeatedly
execute the following steps:

Figure 0.2  The Euclidean algorithm for finding the greatest common divisor of two
positive integers

Description: This algorithm assumes that its input consists of two positive integers and
proceeds to compute the greatest common divisor of these two values.

Procedure:

Step 1. Assign M and N the value of the larger and smaller of the two input values, respectively.

Step 2. Divide M by N, and call the remainder R.

Step 3. If R is not 0, then assign M the value of N, assign N the value of R, and return to step 2;
 otherwise, the greatest common divisor is the value currently assigned to N.

Greek mathematician Euclid, for finding the greatest common divisor of two
positive integers (Figure 0.2).

Once an algorithm for performing a task has been found, the performance
of that task no longer requires an understanding of the principles on which
the algorithm is based. Instead, the performance of the task is reduced to the
process of merely following directions. (We can follow the long division algo-
rithm to find a quotient or the Euclidean algorithm to find a greatest common

M00_BROO3427_13_GE_C00.indd 19 17/10/18 4:37 PM

	 20 Chapter 0  Introduction

divisor without understanding why the algorithm works.) In a sense, the intel-
ligence required to solve the problem at hand is encoded in the algorithm.

Capturing and conveying intelligence (or at least intelligent behavior) by
means of algorithms allows us to build machines that perform useful tasks.
Consequently, the level of intelligence displayed by machines is limited by
the intelligence that can be conveyed through algorithms. We can construct
a machine to perform a task only if an algorithm exists for performing that
task. In turn, if no algorithm exists for solving a problem, then the solution of
that problem lies beyond the capabilities of machines.

Identifying the limitations of algorithmic capabilities was solidified as
a subject in mathematics in the 1930s with the publication of Kurt Gödel’s
incompleteness theorem. This theorem essentially states that in any math-
ematical theory encompassing our traditional arithmetic system, there are
statements whose truth or falseness cannot be established by algorithmic
means. In short, any complete study of our arithmetic system lies beyond the
capabilities of algorithmic activities. This realization shook the foundations
of mathematics, and the study of algorithmic capabilities that ensued was the
beginning of the field known today as computer science. Indeed, it is the study
of algorithms that forms the core of computer science.

0.2 The History of Computing

Today’s computers have an extensive genealogy. One of the earlier computing
devices was the abacus. History tells us that it probably had its roots in ancient
China and was used in the early Greek and Roman civilizations. The machine
is quite simple, consisting of beads strung on rods that are in turn mounted
in a rectangular frame (Figure 0.3). As the beads are moved back and forth
on the rods, their positions represent stored values. It is in the positions of

Figure 0.3  Chinese wooden abacus (Ekkapon/Shutterstock)

M00_BROO3427_13_GE_C00.indd 20 17/10/18 4:37 PM

	 210.2  The History of Computing

the beads that this “computer” represents and stores data. For control of an
algorithm’s execution, the machine relies on the human operator. Thus, the
abacus alone is merely a data storage system; it must be combined with a
human to create a complete computational machine.

In the time period after the Middle Ages and before the Modern Era, the
quest for more sophisticated computing machines was seeded. A few inven-
tors began to experiment with the technology of gears. Among these were
Blaise Pascal (1623–1662) of France, Gottfried Wilhelm Leibniz (1646–1716)
of Germany, and Charles Babbage (1792–1871) of England. These machines
represented data through gear positioning, with data being entered mechani-
cally by establishing initial gear positions. Output from Pascal’s and Leibniz’s
machines was achieved by observing the final gear positions. Babbage, on the
other hand, envisioned machines that would print results of computations
on paper so that the possibility of transcription errors would be eliminated.

As for the ability to follow an algorithm, we can see a progression of
flexibility in these machines. Pascal’s machine was built to perform only
addition. Consequently, the appropriate sequence of steps was embedded into
the structure of the machine itself. In a similar manner, Leibniz’s machine had
its algorithms firmly embedded in its architecture, although the operator could
select from a variety of arithmetic operations it offered. Babbage’s Differ-
ence Engine (of which only a demonstration model was constructed) could be
modified to perform a variety of calculations, but his Analytical Engine (never
funded for construction) was designed to read instructions in the form of holes
in paper cards. Thus Babbage’s Analytical Engine was programmable. In fact,
Augusta Ada Byron (Ada Lovelace), who published a paper in which she dem-
onstrated how Babbage’s Analytical Engine could be programmed to perform
various computations, is often identified today as the world’s first programmer.

The idea of communicating an algorithm via holes in paper was not origi-
nated by Babbage. He got the idea from Joseph Jacquard (1752–1834), who, in
1801, had developed a weaving loom in which the steps to be performed dur-
ing the weaving process were determined by patterns of holes in large thick
cards made of wood (or cardboard). In this manner, the algorithm followed
by the loom could be changed easily to produce different woven designs.
Another beneficiary of Jacquard’s idea was Herman Hollerith (1860–1929),
who applied the concept of representing information as holes in paper cards
to speed up the tabulation process in the 1890 U.S. census. (It was this work by
Hollerith that led to the creation of IBM.) Such cards ultimately came to be
known as punched cards and survived as a popular means of communicating
with computers well into the 1970s.

Nineteenth century technology was unable to cost-effectively produce the
complex gear-driven machines of Pascal, Leibniz, and Babbage. But with the
advances in electronics in the early 1900s, this barrier was overcome. Exam-
ples of this progress include the electromechanical machine of George Stibitz,
completed in 1940 at Bell Laboratories, and the Mark I, completed in 1944 at
Harvard University by Howard Aiken and a group of IBM engineers. These

M00_BROO3427_13_GE_C00.indd 21 17/10/18 4:37 PM

	 22 Chapter 0  Introduction

machines made heavy use of electronically controlled mechanical relays. In
this sense, they were obsolete almost as soon as they were built, because
other researchers were applying the technology of vacuum tubes to construct
totally electronic computers. The first of these vacuum tube machines was
apparently the Atanasoff-Berry machine, constructed during the period from
1937 to 1941 at Iowa State College (now Iowa State University) by John
Atanasoff and his assistant, Clifford Berry. Another was a machine called
Colossus, built under the direction of Tommy Flowers in England to decode
German messages during the latter part of World War II. (Actually, as many
as ten of these machines were apparently built, but military secrecy and issues
of national security kept their existence from becoming part of the “computer
family tree.”) Other, more flexible machines, such as the ENIAC (Electronic
Numerical Integrator and Computer) developed by John Mauchly and J.
Presper Eckert at the Moore School of Electrical Engineering, (Figure 0.4),
University of Pennsylvania, soon followed.

From that point on, the history of computing machines has been closely
linked to advancing technology, including the invention of transistors (for
which physicists William Shockley, John Bardeen, and Walter Brattain were
awarded a Nobel Prize) and the subsequent development of complete circuits
constructed as single units, called integrated circuits (for which Jack Kilby
also won a Nobel Prize in physics). With these developments, the room-sized
machines of the 1940s were reduced over the decades to the size of single
cabinets. At the same time, the processing power of computing machines
began to double every two years (a trend that has continued to this day). As
work on integrated circuitry progressed, many of the components within a
computer became readily available on the open market as integrated circuits
encased in toy-sized blocks of plastic called chips.

Figure 0.4  Three women operating the ENIAC’s (Electronic Numerical Integrator and
Computer) main control panel while the machine was at the Moore School. The machine was
later moved to the U.S. Army’s Ballistics Research Laboratory. (Courtesy of U.S. Army.)

M00_BROO3427_13_GE_C00.indd 22 17/10/18 4:37 PM

	 230.2  The History of Computing

A major step toward popularizing computing was the development
of desktop computers. The origins of these machines can be traced to the
computer hobbyists who built homemade computers from combinations of
chips. It was within this “underground” of hobby activity that Steve Jobs and
Stephen Wozniak built a commercially viable home computer and, in 1976,
established Apple Computer, Inc. (now Apple Inc.) to manufacture and mar-
ket their products. Other companies that marketed similar products were
Commodore, Heathkit, and Radio Shack. Although these products were
popular among computer hobbyists, they were not widely accepted by the
business community, which continued to look to the well-established IBM
and its large mainframe computers for the majority of its computing needs.

Babbage’s Difference Engine

The machines designed by Charles Babbage were truly the forerunners of modern computer design.
If technology had been able to produce his machines in an economically feasible manner and if the
data processing demands of commerce and government had been on the scale of today’s requirements,
Babbage’s ideas could have led to a computer revolution in the 1800s. As it was, only a demonstration
model of his Difference Engine was constructed in his lifetime. This machine determined numerical
values by computing “successive differences.” We can gain an insight to this technique by considering
the problem of computing the squares of the integers. We begin with the knowledge that the square
of 0 is 0, the square of 1 is 1, the square of 2 is 4, and the square of 3 is 9. With this, we can determine
the square of 4 in the following manner (see the following diagram). We first compute the differences
of the squares we already know: 12 - 02 = 1, 22 - 12 = 3, and 32 - 22 = 5. Then we compute the
differences of these results: 3 - 1 = 2, and 5 - 3 = 2. Note that these differences are both 2. Assum-
ing that this consistency continues (mathematics can show that it does), we conclude that the differ-
ence between the value (42 - 32) and the value (32 - 22) must also be 2. Hence (42 - 32) must be 2
greater than (32 - 22), so 42 - 32 = 7 and thus 42 = 32 + 7 = 16. Now that we know the square of
4, we could continue our procedure to compute the square of 5 based on the values of 12, 22, 32, and
42. (Although a more in–depth discussion of successive differences is beyond the scope of our current
study, students of calculus may wish to observe that the preceding example is based on the fact that
the derivative of y = x2 is a straight line with a slope of 2.)

0

1

2

3

4

5

0

1

4

9

16

1

3

5

7

2

2

2

2

First
di�erence

Second
di�erence

x x 2

M00_BROO3427_13_GE_C00.indd 23 17/10/18 4:37 PM

	 24 Chapter 0  Introduction

In 1981, IBM introduced its first desktop computer, called the personal
computer, or PC, whose underlying software was developed by a newly-
formed company known as Microsoft. The PC was an instant success and
legitimized the desktop computer as an established commodity in the minds
of the business community. Today, the term PC is widely used to refer to all
those machines (from various manufacturers) whose design has evolved from
IBM’s initial desktop computer, most of which continue to be marketed with
software from Microsoft. At times, however, the term PC is used interchange-
ably with the generic terms desktop or laptop.

As the twentieth century drew to a close, the ability to connect individual
computers in a world-wide system called the Internet was revolutioniz-
ing communication. In this context, Tim Berners-Lee (a British scientist)
proposed a system by which documents stored on computers throughout the
Internet could be linked together producing a maze of linked information
called the World Wide Web (often shortened to “Web”). To make the infor-
mation on the Web accessible, software systems, called search engines, were
developed to “sift through” the Web, “categorize” their findings, and then use
the results to assist users researching particular topics. Major players in this
field are Google, Yahoo, and Microsoft. These companies continue to expand
their Web-related activities, often in directions that challenge our traditional
way of thinking.

Augusta Ada Byron, Countess of Lovelace, has been the subject of much commentary in the computing
community. She lived a somewhat tragic life of less than 37 years (1815–1852) that was complicated by
poor health and the fact that she was a nonconformist in a society that limited the professional role
of women. Although she was interested in a wide range of science, she concentrated her studies in
mathematics. Her interest in “compute science” began when she became fascinated by the machines of
Charles Babbage at a demonstration of a prototype of his Difference Engine in 1833. Her contribution
to computer science stems from her translation from French into English of a paper discussing Babbage’s
designs for the Analytical Engine. To this translation, Babbage encouraged her to attach an addendum
describing applications of the engine and containing examples of how the engine could be programmed
to perform various tasks. Babbage’s enthusiasm for Ada Byron’s work was apparently motivated by his
hope that its publication would lead to financial backing for the construction of his Analytical Engine.
(As the daughter of Lord Byron, Ada Byron held celebrity status with potentially significant financial
connections.) This backing never materialized, but Ada Byron’s addendum has survived and is consid-
ered to contain the first examples of computer programs. The degree to which Babbage influenced Ada
Byron’s work is debated by historians. Some argue that Babbage made major contributions, whereas
others contend that he was more of an obstacle than an aid. Nonetheless, Augusta Ada Byron is rec-
ognized today as the world’s first programmer, a status that was certified by the U.S. Department of
Defense when it named a prominent programming language (Ada) in her honor.

Augusta Ada Byron

M00_BROO3427_13_GE_C00.indd 24 17/10/18 4:37 PM

	 250.3  An Outline of Our Study

At the same time that desktop and laptop computers were being accepted
and used in homes, the miniaturization of computing machines continued.
Today, tiny computers are embedded within a wide variety of electronic appli-
ances and devices. Automobiles may now contain dozens of small computers
running Global Positioning Systems (GPS), monitoring the function of the
engine, and providing voice command services for controlling the car’s audio
and phone communication systems.

Perhaps the most revolutionary application of computer miniaturization
is found in the expanding capabilities of smartphones, hand-held general-
purpose computers on which telephony is only one of many applications.
More powerful than the supercomputers of prior decades, these pocket-sized
devices are equipped with a rich array of sensors and interfaces including
cameras, microphones, compasses, touch screens, accelerometers (to detect
the phone’s orientation and motion), and a number of wireless technologies
to communicate with other smartphones and computers. Many argue that the
smartphone is having a greater effect on global society than the PC revolution.

Founded in 1998, Google LLC (formerly Google Inc.) has become one of the world’s most recognized
technology companies. Its core service, the Google search engine, is used by millions of people to
find documents on the World Wide Web. In addition, Google provides electronic mail service (called
Gmail), an Internet-based video-sharing service (called YouTube), and a host of other Internet ser-
vices (including Google Maps, Google Calendar, Google Earth, Google Books, and Google Translate).

However, in addition to being a prime example of the entrepreneurial spirit, Google also provides
examples of how expanding technology is challenging society. For example, Google’s search engine
has led to questions regarding the extent to which an international company should comply with
the wishes of individual governments; YouTube has raised questions regarding the extent to which
a company should be liable for information that others distribute through its services as well as the
degree to which the company can claim ownership of that information; Google Books has generated
concerns regarding the scope and limitations of intellectual property rights; and Google Maps has
been accused of violating privacy rights.

Google

0.3 An Outline of Our Study

This text follows a bottom-up approach to the study of computer science,
beginning with such hands-on topics as computer hardware and leading to
the more abstract topics such as algorithm complexity and computability. The
result is that our study follows a pattern of building larger and larger abstract
tools as our understanding of the subject expands.

M00_BROO3427_13_GE_C00.indd 25 17/10/18 4:37 PM

	 26 Chapter 0  Introduction

We begin by considering topics dealing with the design and construction
of machines for executing algorithms. In Chapter 1 (Data Storage), we look
at how information is encoded and stored within modern computers, and in
Chapter 2 (Data Manipulation), we investigate the basic internal operation
of a simple computer. Although part of this study involves technology, the
general theme is technology independent. That is, such topics as digital circuit
design, data encoding and compression systems, and computer architecture
are relevant over a wide range of technology and promise to remain relevant
regardless of the direction of future technology.

In Chapter 3 (Operating Systems), we study the software that controls the
overall operation of a computer. This software is called an operating system.
It is a computer’s operating system that controls the interface between the
machine and its outside world, protecting the machine and the data stored
within from unauthorized access, allowing a computer user to request the exe-
cution of various programs, and coordinating the internal activities required
to fulfill the user’s requests.

In Chapter 4 (Networking and the Internet), we study how computers
are connected to each other to form computer networks and how networks
are connected to form internets. This study leads to topics such as network
protocols, the Internet’s structure and internal operation, the World Wide
Web, and numerous issues of security.

Chapter 5 (Algorithms) introduces the study of algorithms from a more
formal perspective. We investigate how algorithms are discovered, identify
several fundamental algorithmic structures, develop elementary techniques
for representing algorithms, and introduce the subjects of algorithm efficiency
and correctness.

In Chapter 6 (Programming Languages), we consider the subject of algo-
rithm representation and the program development process. Here we find
that the search for better programming techniques has led to a variety of pro-
gramming methodologies or paradigms, each with its own set of programming
languages. We investigate these paradigms and languages as well as consider
issues of grammar and language translation.

Chapter 7 (Software Engineering) introduces the branch of computer
science known as software engineering, which deals with the problems
encountered when developing large software systems. The underlying theme
is that the design of large software systems is a complex task that embraces
problems beyond those of traditional engineering. Thus, the subject of soft-
ware engineering has become an important field of research within computer
science, drawing from such diverse fields as engineering, project manage-
ment, personnel management, programming language design, and even
architecture.

In the next two chapters, we look at ways data can be organized within a
computer system. In Chapter 8 (Data Abstractions), we introduce techniques
traditionally used for organizing data in a computer’s main memory and
then trace the evolution of data abstraction from the concept of primitives

M00_BROO3427_13_GE_C00.indd 26 17/10/18 4:37 PM

	 270.4  The Overarching Themes of Computer Science

to today’s object-oriented techniques. In Chapter 9 (Database Systems), we
consider methods traditionally used for organizing data in a computer’s mass
storage and investigate how extremely large and complex database systems
are implemented.

In Chapter 10 (Computer Graphics), we explore the subject of graphics and
animation, a field that deals with creating and photographing virtual worlds.
Based on advancements in the more traditional areas of computer science
such as machine architecture, algorithm design, data structures, and software
engineering, the discipline of graphics and animation has seen significant prog-
ress and has now blossomed into an exciting, dynamic subject. Moreover, the
field exemplifies how various components of computer science combine with
other disciplines such as physics, art, and photography to produce striking results.

In Chapter 11 (Artificial Intelligence), we learn that to develop more
useful machines, computer science has turned to the study of human intel-
ligence for insight. The hope is that by understanding how our own minds
reason and perceive, researchers will be able to design algorithms that mimic
these processes and thus transfer comparable capabilities to machines. The
result is the area of computer science known as artificial intelligence, which
leans heavily on research in such areas as psychology, biology, and linguistics.

We close our study with Chapter 12 (Theory of Computation) by investi-
gating the theoretical foundations of computer science—a subject that allows
us to understand the limitations of algorithms (and thus machines). Here we
identify some problems that cannot be solved algorithmically (and therefore
lie beyond the capabilities of machines) as well as learn that the solutions to
many other problems require such enormous time or space that they are also
unsolvable from a practical perspective. Thus, it is through this study that we
are able to grasp the scope and limitations of algorithmic systems.

In each chapter, our goal is to explore the subject deeply enough to enable
true understanding. We want to develop a working knowledge of computer
science—a knowledge that will allow you to understand the technical society
in which you live and to provide a foundation from which you can learn on
your own as science and technology advance.

0.4 The Overarching Themes of Computer
Science

In addition to the main topics of each chapter as listed above, we also hope
to broaden your understanding of computer science by incorporating several
overarching themes. The miniaturization of computers and their expanding
capabilities have brought computer technology to the forefront of today’s
society, and computer technology is so prevalent that familiarity with it is
fundamental to being a member of the modern world. Computing technology

M00_BROO3427_13_GE_C00.indd 27 17/10/18 4:37 PM

	 28 Chapter 0  Introduction

has altered the ability of governments to exert control; had enormous impact
on global economics; led to startling advances in scientific research; revolu-
tionized the role of data collection, storage, and applications; provided new
means for people to communicate and interact; and has repeatedly challenged
society’s status quo. The result is a proliferation of subjects surrounding com-
puter science, each of which is now a significant field of study in its own right.
Moreover, as with mechanical engineering and physics, it is often difficult to
draw a line between these fields and computer science itself. Thus, to gain a
proper perspective, our study will not only cover topics central to the core of
computer science but also will explore a variety of disciplines dealing with
both applications and consequences of the science. Indeed, an introduction
to computer science is an interdisciplinary undertaking.

As we set out to explore the breadth of the field of computing, it is helpful
to keep in mind the main themes that unite computer science. While the codi-
fication of the “Seven Big Ideas of Computer Science”1 post-dates the first
ten editions of this book, they closely parallel the themes of the chapters to
come. The “Seven Big Ideas” are, briefly: Algorithms, Abstraction, Creativity,
Data, Programming, Internet, and Impact. In the chapters that follow, we
include a variety of topics, in each case introducing central ideas of the topic,
current areas of research, and some of the techniques being applied to
advance knowledge in that realm. Watch for the “Big Ideas” as we return to
them again and again.

Algorithms

Limited data storage capabilities and intricate, time-consuming program-
ming procedures restricted the complexity of the algorithms used in the ear-
liest computing machines. However, as these limitations began to disappear,
machines were applied to increasingly larger and more complex tasks. As
attempts to express the composition of these tasks in algorithmic form began
to tax the abilities of the human mind, more and more research efforts were
directed toward the study of algorithms and the programming process.

It was in this context that the theoretical work of mathematicians began to
pay dividends. As a consequence of Gödel’s incompleteness theorem, mathe-
maticians had already been investigating those questions regarding algorithmic
processes that advancing technology was now raising. With that, the stage was
set for the emergence of a new discipline known as computer science.

Today, computer science has established itself as the science of algorithms.
The scope of this science is broad, drawing from such diverse subjects as
mathematics, engineering, psychology, biology, business administration, and
linguistics. Indeed, researchers in different branches of computer science may
have very distinct definitions of the science. For example, a researcher in the

1https://apstudent.collegeboard.org/apcourse/ap-computer-science-principles

M00_BROO3427_13_GE_C00.indd 28 17/10/18 4:37 PM

http://https//apstudent.collegeboard.org/apcourse/ap%E2%80%90computer%E2%80%90science%E2%80%90principles

	 290.4  The Overarching Themes of Computer Science

field of computer architecture may focus on the task of miniaturizing circuitry
and thus view computer science as the advancement and application of tech-
nology. But a researcher in the field of database systems may see computer
science as seeking ways to make information systems more useful. And a
researcher in the field of artificial intelligence may regard computer science
as the study of intelligence and intelligent behavior.

Nevertheless, all of these researchers are involved in aspects of the science
of algorithms. Given the central role that algorithms play in computer science
(see Figure 0.5), it is instructive to identify some questions that will provide
focus for our study of this big idea.

•	 Which problems can be solved by algorithmic processes?
•	 How can the discovery of algorithms be made easier?
•	 How can the techniques of representing and communicating algorithms be

improved?
•	 How can the characteristics of different algorithms be analyzed and

compared?
•	 How can algorithms be used to manipulate information?
•	 How can algorithms be applied to produce intelligent behavior?
•	 How does the application of algorithms affect society?

Abstraction

The term abstraction, as we are using it here, refers to the distinction between
the external properties of an entity and the details of the entity’s internal
composition. It is abstraction that allows us to ignore the internal details of
a complex device such as a computer, automobile, or microwave oven and
use it as a single, comprehensible unit. Moreover, it is by means of abstrac-
tion that such complex systems are designed and manufactured in the first
place. Computers, automobiles, and microwave ovens are constructed from

Figure 0.5  The central role of algorithms in computer science

Limitations of

Application of

Analysis of

Execution of

Representation ofDiscovery of

Communication of
Algorithms

M00_BROO3427_13_GE_C00.indd 29 17/10/18 4:37 PM

	 30 Chapter 0  Introduction

components, each of which represents a level of abstraction at which the use
of the component is isolated from the details of the component’s internal
composition.

It is by applying abstraction that we are able to construct, analyze, and
manage large, complex computer systems, which would be overwhelming if
viewed in their entirety at a detailed level. At each level of abstraction, we
view the system in terms of components, called abstract tools, whose internal
composition we ignore. This allows us to concentrate on how each component
interacts with other components at the same level and how the collection as
a whole forms a higher-level component. Thus, we are able to comprehend
the part of the system that is relevant to the task at hand rather than being
lost in a sea of details.

We emphasize that abstraction is not limited to science and technology.
It is an important simplification technique with which our society has cre-
ated a lifestyle that would otherwise be impossible. Few of us understand
how the various conveniences of daily life are actually implemented. We eat
food and wear clothes that we cannot produce by ourselves. We use electrical
devices and communication systems without understanding the underlying
technology. We use the services of others without knowing the details of their
professions. With each new advancement, a small part of society chooses to
specialize in its implementation, while the rest of us learn to use the results as
abstract tools. In this manner, society’s warehouse of abstract tools expands,
and society’s ability to progress increases.

Abstraction is a recurring pillar of our study. We will learn that computing
equipment is constructed in levels of abstract tools. We will also see that the
development of large software systems is accomplished in a modular fashion
in which each module is used as an abstract tool in larger modules. Moreover,
abstraction plays an important role in the task of advancing computer science
itself, allowing researchers to focus attention on particular areas within a com-
plex field. In fact, the organization of this text reflects this characteristic of the
science. Each chapter, which focuses on a particular area within the science, is
often surprisingly independent of the others, yet together the chapters form
a comprehensive overview of a vast field of study.

Creativity

While computers may merely be complex machines mechanically executing
rote algorithmic instructions, we shall see that the field of computer science
is an inherently creative one. Discovering and applying new algorithms is a
human activity that depends on our innate desire to apply our tools to solve
problems in the world around us. Computer science not only extends forms
of expression spanning the visual, language, and musical arts, but also enables
new modes of digital expression that pervade the modern world.

Creating large software systems is much less like following a cookbook
recipe than it is like conceiving of a grand new sculpture. Envisioning its form

M00_BROO3427_13_GE_C00.indd 30 17/10/18 4:37 PM

